Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Front Med (Lausanne) ; 8: 728543, 2021.
Article in English | MEDLINE | ID: covidwho-1497088

ABSTRACT

Progress made during the last decade in stem cell biology allows currently an unprecedented potential to translate these advances into the clinical applications and to shape the future of regenerative medicine. Organoid technology is amongst these major developments, derived from primary tissues or more recently, from induced pluripotent stem cells (iPSC). The use of iPSC technology offers the possibility of cancer modeling especially in hereditary cancers with germline oncogenic mutations. Similarly, it has the advantage to be amenable to genome editing with introduction of specific oncogenic alterations using CRISPR-mediated gene editing. In the field of regenerative medicine, iPSC-derived organoids hold promise for the generation of future advanced therapeutic medicinal products (ATMP) for organ repair. Finally, it appears that they can be of highly useful experimental tools to determine cell targets of SARS-Cov-2 infections allowing to test anti-Covid drugs. Thus, with the possibilities of genomic editing and the development of new protocols for differentiation toward functional tissues, it is expected that iPSC-derived organoid technology will represent also a therapeutic tool in all areas of medicine.

2.
J Transl Med ; 19(1): 290, 2021 07 05.
Article in English | MEDLINE | ID: covidwho-1298054

ABSTRACT

BACKGROUND: The worldwide pandemic caused by the SARS-CoV-2 virus is characterized by significant and unpredictable heterogeneity in symptoms that remains poorly understood. METHODS: Transcriptome and single cell transcriptome of COVID19 lung were integrated with deeplearning analysis of MHC class I immunopeptidome against SARS-COV2 proteome. RESULTS: An analysis of the transcriptomes of lung samples from COVID-19 patients revealed that activation of MHC class I antigen presentation in these tissues was correlated with the amount of SARS-CoV-2 RNA present. Similarly, a positive relationship was detected in these samples between the level of SARS-CoV-2 and the expression of a genomic cluster located in the 6p21.32 region (40 kb long, inside the MHC-II cluster) that encodes constituents of the immunoproteasome. An analysis of single-cell transcriptomes of bronchoalveolar cells highlighted the activation of the immunoproteasome in CD68 + M1 macrophages of COVID-19 patients in addition to a PSMB8-based trajectory in these cells that featured an activation of defense response during mild cases of the disease, and an impairment of alveolar clearance mechanisms during severe COVID-19. By examining the binding affinity of the SARS-CoV-2 immunopeptidome with the most common HLA-A, -B, and -C alleles worldwide, we found higher numbers of stronger presenters in type A alleles and in Asian populations, which could shed light on why this disease is now less widespread in this part of the world. CONCLUSIONS: HLA-dependent heterogeneity in macrophage immunoproteasome activation during lung COVID-19 disease could have implications for efforts to predict the response to HLA-dependent SARS-CoV-2 vaccines in the global population.


Subject(s)
COVID-19 , COVID-19 Vaccines , Humans , Lung , Macrophages , RNA, Viral , SARS-CoV-2
3.
Cell Death Dis ; 12(3): 258, 2021 03 11.
Article in English | MEDLINE | ID: covidwho-1132059

ABSTRACT

The circulating metabolome provides a snapshot of the physiological state of the organism responding to pathogenic challenges. Here we report alterations in the plasma metabolome reflecting the clinical presentation of COVID-19 patients with mild (ambulatory) diseases, moderate disease (radiologically confirmed pneumonitis, hospitalization and oxygen therapy), and critical disease (in intensive care). This analysis revealed major disease- and stage-associated shifts in the metabolome, meaning that at least 77 metabolites including amino acids, lipids, polyamines and sugars, as well as their derivatives, were altered in critical COVID-19 patient's plasma as compared to mild COVID-19 patients. Among a uniformly moderate cohort of patients who received tocilizumab, only 10 metabolites were different among individuals with a favorable evolution as compared to those who required transfer into the intensive care unit. The elevation of one single metabolite, anthranilic acid, had a poor prognostic value, correlating with the maintenance of high interleukin-10 and -18 levels. Given that products of the kynurenine pathway including anthranilic acid have immunosuppressive properties, we speculate on the therapeutic utility to inhibit the rate-limiting enzymes of this pathway including indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase.


Subject(s)
COVID-19/blood , Metabolome , SARS-CoV-2/metabolism , Antibodies, Monoclonal, Humanized/administration & dosage , Biomarkers/blood , COVID-19/diagnosis , Female , Humans , Male , Metabolomics , Prognosis , COVID-19 Drug Treatment
4.
iScience ; 23(10): 101611, 2020 Oct 23.
Article in English | MEDLINE | ID: covidwho-1065230

ABSTRACT

The molecular mechanisms of cytokine storm in patients with severe COVID-19 infections are poorly understood. To uncover these events, we performed transcriptome analyses of lung biopsies from patients with COVID-19, revealing a gene enrichment pattern similar to that of PPARγ-knockout macrophages. Single-cell gene expression analysis of bronchoalveolar lavage fluids revealed a characteristic trajectory of PPARγ-related disturbance in the CD14+/CD16+ cells. We identified a correlation with the disease severity and the reduced expression of several members of the PPARγ complex such as EP300, RXRA, RARA, SUMO1, NR3C1, and CCDC88A. ChIP-seq analyses confirmed repression of the PPARγ-RXRA-NR3C1 cistrome in COVID-19 lung samples. Further analysis of protein-protein networks highlighted an interaction between the PPARγ-associated protein SUMO1 and a nucleoprotein of the SARS virus. Overall, these results demonstrate for the first time the involvement of the PPARγ complex in severe COVID-19 lung disease and suggest strongly its role in the major monocyte/macrophage-mediated inflammatory storm.

5.
Stem Cells Transl Med ; 10(4): 568-571, 2021 04.
Article in English | MEDLINE | ID: covidwho-996305

ABSTRACT

The use of mesenchymal stem cells (MSC) derived from several sources has been suggested as a major anti-inflammation strategy during the recent outbreak of coronavirus-19 (COVID-19). As the virus enters the target cells through the receptor ACE2, it is important to determine if the MSC population transfused to patients could also be a target for the virus entry. We report here that ACE2 is highly expressed in adult bone marrow, adipose tissue, or umbilical cord-derived MSC. On the other hand, placenta-derived MSC express low levels of ACE2 but only in early passages of cultures. MSC derived from human embryonic stem cell or human induced pluripotent stem cells express also very low levels of ACE2. The transcriptome analysis of the MSCs with lowest expression of ACE2 in fetal-like MSCs is found to be associated in particularly with an anti-inflammatory signature. These results are of major interest for designing future clinical MSC-based stem cell therapies for severe COVID-19 infections.


Subject(s)
Angiotensin-Converting Enzyme 2/immunology , COVID-19/immunology , Cell- and Tissue-Based Therapy , Mesenchymal Stem Cells , SARS-CoV-2/immunology , Transcriptome/immunology , Adult , Female , Humans , Infant, Newborn , Male , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/pathology , Mesenchymal Stem Cells/virology , Organ Specificity/immunology
6.
Nat Cancer ; 1(10): 965-975, 2020 10.
Article in English | MEDLINE | ID: covidwho-798872

ABSTRACT

Patients with cancer are presumed to be at increased risk of severe COVID-19 outcomes due to underlying malignancy and treatment-induced immunosuppression. Of the first 178 patients managed for COVID-19 at the Gustave Roussy Cancer Centre, 125 (70.2%) were hospitalized, 47 (26.4%) developed clinical worsening and 31 (17.4%) died. An age of over 70 years, smoking status, metastatic disease, cytotoxic chemotherapy and an Eastern Cooperative Oncology Group score of ≥2 at the last visit were the strongest determinants of increased risk of death. In multivariable analysis, the Eastern Cooperative Oncology Group score remained the only predictor of death. In contrast, immunotherapy, hormone therapy and targeted therapy did not increase clinical worsening or death risk. Biomarker studies found that C-reactive protein and lactate dehydrogenase levels were significantly associated with an increased risk of clinical worsening, while C-reactive protein and D-dimer levels were associated with an increased risk of death. COVID-19 management impacted the oncological treatment strategy, inducing a median 20 d delay in 41% of patients and adaptation of the therapeutic strategy in 30% of patients.


Subject(s)
COVID-19/epidemiology , SARS-CoV-2/pathogenicity , Aged , Cohort Studies , Female , Humans , Male , Middle Aged
7.
Cell ; 182(6): 1401-1418.e18, 2020 09 17.
Article in English | MEDLINE | ID: covidwho-694669

ABSTRACT

Blood myeloid cells are known to be dysregulated in coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2. It is unknown whether the innate myeloid response differs with disease severity and whether markers of innate immunity discriminate high-risk patients. Thus, we performed high-dimensional flow cytometry and single-cell RNA sequencing of COVID-19 patient peripheral blood cells and detected disappearance of non-classical CD14LowCD16High monocytes, accumulation of HLA-DRLow classical monocytes (Human Leukocyte Antigen - DR isotype), and release of massive amounts of calprotectin (S100A8/S100A9) in severe cases. Immature CD10LowCD101-CXCR4+/- neutrophils with an immunosuppressive profile accumulated in the blood and lungs, suggesting emergency myelopoiesis. Finally, we show that calprotectin plasma level and a routine flow cytometry assay detecting decreased frequencies of non-classical monocytes could discriminate patients who develop a severe form of COVID-19, suggesting a predictive value that deserves prospective evaluation.


Subject(s)
Coronavirus Infections , Coronavirus , Pandemics , Pneumonia, Viral , Betacoronavirus , COVID-19 , Flow Cytometry , Humans , Leukocyte L1 Antigen Complex , Monocytes , Myeloid Cells , Prospective Studies , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL